454 research outputs found

    Spin-polarized tunneling spectroscopy in tunnel junctions with half-metallic electrodes

    Full text link
    We have studied the magnetoresistance (TMR) of tunnel junctions with electrodes of La2/3Sr1/3MnO3 and we show how the variation of the conductance and TMR with the bias voltage can be exploited to obtain a precise information on the spin and energy dependence of the density of states. Our analysis leads to a quantitative description of the band structure of La2/3Sr1/3MnO3 and allows the determination of the gap delta between the Fermi level and the bottom of the t2g minority spin band, in good agreement with data from spin-polarized inverse photoemission experiments. This shows the potential of magnetic tunnel junctions with half-metallic electrodes for spin-resolved spectroscopic studies.Comment: To appear in Physical Review Letter

    Ising model in small-world networks

    Full text link
    The Ising model in small-world networks generated from two- and three-dimensional regular lattices has been studied. Monte Carlo simulations were carried out to characterize the ferromagnetic transition appearing in these systems. In the thermodynamic limit, the phase transition has a mean-field character for any finite value of the rewiring probability p, which measures the disorder strength of a given network. For small values of p, both the transition temperature and critical energy change with p as a power law. In the limit p -> 0, the heat capacity at the transition temperature diverges logarithmically in two-dimensional (2D) networks and as a power law in 3D.Comment: 6 pages, 7 figure

    Evolution of reference networks with aging

    Full text link
    We study the growth of a reference network with aging of sites defined in the following way. Each new site of the network is connected to some old site with probability proportional (i) to the connectivity of the old site as in the Barab\'{a}si-Albert's model and (ii) to τα\tau^{-\alpha}, where τ\tau is the age of the old site. We consider α\alpha of any sign although reasonable values are 0α0 \leq \alpha \leq \infty. We find both from simulation and analytically that the network shows scaling behavior only in the region α<1\alpha < 1. When α\alpha increases from -\infty to 0, the exponent γ\gamma of the distribution of connectivities (P(k)kγP(k) \propto k^{-\gamma} for large kk) grows from 2 to the value for the network without aging, i.e. to 3 for the Barab\'{a}si-Albert's model. The following increase of α\alpha to 1 makes γ\gamma to grow to \infty. For α>1\alpha>1 the distribution P(k)P(k) is exponentional, and the network has a chain structure.Comment: 4 pages revtex (twocolumn, psfig), 5 figure

    Structure of Growing Networks: Exact Solution of the Barabasi--Albert's Model

    Full text link
    We generalize the Barab\'{a}si--Albert's model of growing networks accounting for initial properties of sites and find exactly the distribution of connectivities of the network P(q)P(q) and the averaged connectivity qˉ(s,t)\bar{q}(s,t) of a site ss in the instant tt (one site is added per unit of time). At long times P(q)qγP(q) \sim q^{-\gamma} at qq \to \infty and qˉ(s,t)(s/t)β\bar{q}(s,t) \sim (s/t)^{-\beta} at s/t0s/t \to 0, where the exponent γ\gamma varies from 2 to \infty depending on the initial attractiveness of sites. We show that the relation β(γ1)=1\beta(\gamma-1)=1 between the exponents is universal.Comment: 4 pages revtex (twocolumn, psfig), 1 figur

    Polynomial kernels for 3-leaf power graph modification problems

    Full text link
    A graph G=(V,E) is a 3-leaf power iff there exists a tree T whose leaves are V and such that (u,v) is an edge iff u and v are at distance at most 3 in T. The 3-leaf power graph edge modification problems, i.e. edition (also known as the closest 3-leaf power), completion and edge-deletion, are FTP when parameterized by the size of the edge set modification. However polynomial kernel was known for none of these three problems. For each of them, we provide cubic kernels that can be computed in linear time for each of these problems. We thereby answer an open problem first mentioned by Dom, Guo, Huffner and Niedermeier (2005).Comment: Submitte

    Path Integral Approach to Strongly Nonlinear Composite

    Full text link
    We study strongly nonlinear disordered media using a functional method. We solve exactly the problem of a nonlinear impurity in a linear host and we obtain a Bruggeman-like formula for the effective nonlinear susceptibility. This formula reduces to the usual Bruggeman effective medium approximation in the linear case and has the following features: (i) It reproduces the weak contrast expansion to the second order and (ii) the effective medium exponent near the percolation threshold are s=1s=1, t=1+κt=1+\kappa, where κ\kappa is the nonlinearity exponent. Finally, we give analytical expressions for previously numerically calculated quantities.Comment: 4 pages, 1 figure, to appear in Phys. Rev.

    Small-world networks: Evidence for a crossover picture

    Full text link
    Watts and Strogatz [Nature 393, 440 (1998)] have recently introduced a model for disordered networks and reported that, even for very small values of the disorder pp in the links, the network behaves as a small-world. Here, we test the hypothesis that the appearance of small-world behavior is not a phase-transition but a crossover phenomenon which depends both on the network size nn and on the degree of disorder pp. We propose that the average distance \ell between any two vertices of the network is a scaling function of n/nn / n^*. The crossover size nn^* above which the network behaves as a small-world is shown to scale as n(p1)pτn^*(p \ll 1) \sim p^{-\tau} with τ2/3\tau \approx 2/3.Comment: 5 pages, 5 postscript figures (1 in color), Latex/Revtex/multicols/epsf. Accepted for publication in Physical Review Letter

    Scaling for the Percolation Backbone

    Full text link
    We study the backbone connecting two given sites of a two-dimensional lattice separated by an arbitrary distance rr in a system of size LL. We find a scaling form for the average backbone mass: LdBG(r/L)\sim L^{d_B}G(r/L), where GG can be well approximated by a power law for 0x10\le x\le 1: G(x)xψG(x)\sim x^{\psi} with ψ=0.37±0.02\psi=0.37\pm 0.02. This result implies that LdBψrψ \sim L^{d_B-\psi}r^{\psi} for the entire range 0<r<L0<r<L. We also propose a scaling form for the probability distribution P(MB)P(M_B) of backbone mass for a given rr. For rL,P(MB)r\approx L, P(M_B) is peaked around LdBL^{d_B}, whereas for rL,P(MB)r\ll L, P(M_B) decreases as a power law, MBτBM_B^{-\tau_B}, with τB1.20±0.03\tau_B\simeq 1.20\pm 0.03. The exponents ψ\psi and τB\tau_B satisfy the relation ψ=dB(τB1)\psi=d_B(\tau_B-1), and ψ\psi is the codimension of the backbone, ψ=ddB\psi=d-d_B.Comment: 3 pages, 5 postscript figures, Latex/Revtex/multicols/eps

    Competition between electron pairing and phase coherence in superconducting interfaces

    Get PDF
    In LaAlO3/SrTiO3 heterostructures, a gate tunable superconducting electron gas is confined in a quantum well at the interface between two insulating oxides. Remarkably, the gas coexists with both magnetism and strong Rashba spin–orbit coupling. However, both the origin of superconductivity and the nature of the transition to the normal state over the whole doping range remain elusive. Here we use resonant microwave transport to extract the superfluid stiffness and the superconducting gap energy of the LaAlO3/SrTiO3 interface as a function of carrier density. We show that the superconducting phase diagram of this system is controlled by the competition between electron pairing and phase coherence. The analysis of the superfluid density reveals that only a very small fraction of the electrons condenses into the superconducting state. We propose that this corresponds to the weak filling of high- energy dxz/dyz bands in the quantum well, more apt to host superconductivity

    Small-world properties of the Indian Railway network

    Full text link
    Structural properties of the Indian Railway network is studied in the light of recent investigations of the scaling properties of different complex networks. Stations are considered as `nodes' and an arbitrary pair of stations is said to be connected by a `link' when at least one train stops at both stations. Rigorous analysis of the existing data shows that the Indian Railway network displays small-world properties. We define and estimate several other quantities associated with this network.Comment: 5 pages, 7 figures. To be published in Phys. Rev.
    corecore